jueves, 29 de noviembre de 2007

BIOLOGIA MOLECULAR

La Biología Molecular es el estudio de la vida a un nivel molecular. Esta área se solapa con otros campos de la Biología y la Química, particularmente Genética y Bioquímica. La biología molecular concierne principalmente al entendimiento de las interacciones de los diferentes sistemas de la célula, lo que incluye muchísimas relaciones, entre ellas las del ADN con el ARN, la síntesis de proteínas, el metabolismo, y el cómo todas esas interacciones son reguladas para conseguir un afinado funcionamiento de la célula.
Al estudiar el comportamiento biológico de las moléculas que componen las células vivas, la Biología molecular roza otras ciencias que abordan temas similares: así, p. ej., juntamente con la Genética se interesa por la estructura y funcionamiento de los genes y por la regulación (inducción y represión) de la síntesis intracelular de enzimas (v.) y de otras proteínas. Con la Citología, se ocupa de la estructura de los corpúsculos subcelulares (núcleo, nucléolo, mitocondrias, ribosomas, lisosomas, cte.) y sus funciones dentro de la célula. Con la Bioquímica estudia la composición y cinética de las enzimas, interesándose por los tipos de catálisis enzimática, activaciones, inhibiciones competitivas o alostéricas, etc. También colabora con la Filogenética al estudiar la composición detallada de determinadas moléculas en las distintas especies de seres vivos, aportando valiosos datos para el conocimiento de la evolución.
Sin embargo, difiere de todas estas ciencias enumeradas tanto en los objetivos concretos como en los métodos utilizados para lograrlos. Así como la Bioquímica investiga detalladamente los ciclos metabólicos y la integración y desintegración de las moléculas que componen los seres vivos, la Biología molecular pretende fijarse con preferencia en el comportamiento biológico de las macromoléculas (ADN, ARN, enzimas, hormonas, etc.) dentro de la célula y explicar las funciones biológicas del ser vivo por estas propiedades a nivel molecular.

ADN


La función Principal del ADN es mantener a través del código genético, la información genética necesaria para crear un ser vivo idéntico a aquel del que proviene (o casi similar, en el caso de mezclarse con otra cadena como es el caso de la reproducción sexual o de sufrir mutaciones. Las cadenas de polipeptídicas codificadas por el ADN pueden ser estructurales como las proteínas de los músculos, cartílagos , pelo, etc., bien funcionales como las de la hemoglobina o las innumerables enzimas del organismo. La función principal de la herencia es la especificación de las proteínas, siendo el ADN una especie de plano o receta para nuestras proteínas.
Para hacerse una idea, una diminuta cantidad de ADN en un huevo fertilizado, determina casi todas las características físicas del animal en su desarrollo completo; por ejemplo: la diferencia entre un ser humano y una rana está codificada en una parte relativamente pequeña de este ADN.
En los organismos procariotas (moneras), así como en las mitocondrias y cloroplastos eucariotas, el ADN se presenta como una doble cadena (de cerca de 1 mm de longitud), circular y cerrada, que toma el nombre de cromosoma bacteriano, que es circular excepto en las micoplasmas, que es lineal. En los Eucariotas el ADN se encuentra localizado principalmente en el núcleo, apareciendo el superenrrollamiento (trenzamiento de la trenza) y la asociación con proteínas histónicas y no histónicas. El ADN se enrolla (dos vueltas) alrededor de un octeto de proteínas histónicas formando un nucleosoma, estos quedan separados por una secuencia de ADN de hasta 80 pares de bases, formando un "collar de perlas" o más correctamente denominado fibra de cromatina, siendo la estructura propia del núcleo interfásico, que no ha entrado en división. Este collar de nucleosomas vuelve a enrollarse y cada 6 nucleosomas constituyen un "paso de rosca" por medio de histoma H1 formando estructuras del tipo solenoide. En los virus, el ADN puede presentarse como una doble hélice cerrada, como una doble hélice abierta o simplemente como una única hebra lineal.
El ADN Se conoce desde hace más de cien años. Fue aislado por primera vez en 1869 por un médico alemán llamado Friedrich Miescher, en la misma década notable en la cual Darwin publicó El Origen de las Especies y Mendel presentó sus resultados a la Sociedad de Historia Natural de Brünn. La sustancia que Miescher aisló era blanca, azucarada, ligeramente ácida y contenía fósforo, la encontró en el pus de las vendas y en el esperma de salmón; dado que la encontró en el núcleo de las células, la llamo nucleína, , aunque no fue reconocida hasta 1943 gracias al experimento realizado por Oswald Avery. Recién en 1953 Watson y Crick, en Inglaterra descubrieron en base a información de otros científicos la estructura molecular del ADN. Lo que permitió entender como la información genética es almacenada y procesada.

ARN

El ácido ribonucleico (ARN o RNA) es un ácido nucleico, polímero lineal de nucleótidos formando una larga cadena. El eje de la cadena lo forman grupos fosfato y azúcares ribosa de forma alternativa del que toma su nombre. Los nucleótidos del ARN contienen el azúcar ribosa y entre sus bases nitrogenadas al uracilo, a diferencia del ácido desoxirribonucleico (ADN) cuyo azúcar es una desoxirribosa y contiene a la timina en vez del uracilo. La función principal del ARN es servir como intermediario de la información que lleva el ADN en forma de genes y la proteína final codificada por esos genes.Fue descubierto por Severo Ochoa.
El ARN es transcrito desde el ADN por enzimas llamadas ARN polimerasas y procesado en el transcurso por muchas más proteínas. El uracilo, aunque es muy diferente, puede formar puentes de hidrógeno con la adenina, lo mismo que la timina lo hace en el ADN. El porqué el ARN contiene uracilo en vez de timina es un enigma del que nadie sabe la respuesta.
Tabla de contenidos[ocultar]


Flujo de la información genética [editar]
El material genético de las células se encuentra en forma de ADN. Dentro de las moléculas de ADN se encuentra la información necesaria para sintetizar las proteínas que utiliza el organismo; pero el proceso no es lineal, es bastante complejo. El ADN no se traduce directamente en proteínas.
En las células eucariotas el ADN se encuentra encerrado en el núcleo. La síntesis de ADN se hace en el núcleo, así como también la síntesis de ARN, pero la síntesis de proteínas ocurre en el citoplasma. El mecanismo por el cual la información se trasvasa desde el núcleo celular al citoplasma es mediante la trascripción del ARN a partir del ADN y de la traducción de proteínas a partir de ARN.

ARN, el mensajero [editar]
Parte del ADN se transcribe en ARN. El ARN va como un mensajero al citoplasma y allí el ribosoma es el lugar físico para la traducción de los genes a proteínas.

Tipos de ARN [editar]
ARN mensajero.
ARN de transferencia.
ARN ribosomal.
ARN de interferencia.

ARN en otros organismos [editar]
El ARN es el principal material genético usado en los organismos llamados virus, y el ARN también es importante en la producción de proteínas en otros organismos vivos. La mecánica del ARN en los organismos eucarioticos es similar en los organismos procarióticos. El ARN puede moverse dentro de las células de los organismos vivos y por consiguiente sirve como una suerte de mensajero genético, transmitiendo la información guardada en el ADN de la célula, desde el núcleo hacia otras partes de la célula donde se usa para ayudar a producir proteínas. Una sola hebra de ADN se usa a la vez, el RNA polimerasa es la enzima que cataliza el proceso y las bases nitrogenadas son las mismas. Solo que en los procariotes, no existe el núcleo.

Traducción [editar]
El ARN se transcribe a partir de una de las dos cadenas del ADN. En caso contrario, al transcribirse ambas al mismo tiempo, de una de las hélices saldría una proteína y de la otra algo totalmente diferente.
Por ejemplo, si en una de las cadenas de ADN hubiera: GATACA, en la otra cadena, la homóloga, debería haber: CTATGT.
La primera al transcribirse a ARN daría dos codones: GAU-ACA. La segunda CUA-UGU.
La primera formaría la cadena de aminoácidos siguiente. En el primer caso: Ácido Aspártico-Treonina y en el segundo caso: Leucina-Cisteína.
Que sólo se transcriba una hélice no significa que siempre sea la misma a lo largo de todo el cromosoma. Puede transcribirse una hélice en un sitio y otra en otro.
En la traducción de codones a aminoácidos intervienen otras moléculas de ARN, las llamadas ARN de transferencia.
Algunas moléculas de ARN presentan actividad catalítica, y son conocidas como ribozimas. La mayoría de los ARN son autocatalíticos, ya que catalizan su propio procesamiento. Su hallazgo es relativamente reciente, y antes se consideraba que solo las proteínas eran las únicas macromoléculas capaces de poseer actividad catalítica.

Bases Nitrogenadas y complemento [editar]
Están formadas por pares de bases, la unión de estas es semejante a la del ADN, pero difiere en que la adenina (A) se une al uracilo (U), entonces su complemento es:
- Uracilo (U) con Adenina (A)
- Citosina (C) con Guanina (G)=
U - A
C - G

Azúcar [editar]
El ARN contiene el azúcar pentosa (o sea de con 5 carbonos) llamada ribosa y sus moléculas están formadas también por pares de bases, de ahí ribonucleico.

Función a la materia viva
La función principal del ARN es servir como intermediario a la información que le lleva el ADN en forma de genes y la proteína final codificada por esos genes. El ARN es transcrito desde el ADN por enzimas llamadas ARN polimerasas y procesado por muchas más proteínas. El código genético de las células se encuentra en forma de ADN. Dentro de las moléculas de ADN se encuentra la información necesaria para sintetizar las proteínas que utiliza el organismo, pero el proceso es lineal, es bastante complejo.

LA EVOLUCION DE LAS ESPECIES

Antes del siglo XIX existieron diversas hipótesis que intentaban explicar el origen de la vida sobre la Tierra. Las teorías creacionistas hacían referencia a un hecho puntual de la creación divina; por otra parte, las teorías de la generación espontánea defendía que la aparición de los vivos se producía de manera natural, a partir de la materia inerte.
Una primera aproximación científica sobre tema es el trabajo de (1924), El origen de la sobre la Tierra, donde el químico ruso propone una explicación, vigente aún hoy de la manera natural en que de la materia surgieron las primeras formas prebiológicas y, posteriormente el resto de los seres vivos. En segundo aspecto de la generación espontánea de la vida tiene una respuesta convincente desde mediados del siglo XIX. En primer lugar; los experimentos realizados por Pasteur, y, de manera fundamental, con los bajos del naturalista británico Charles Darwin (1859), que en su obra El origen de las especies aporta una explicación científica sobre la evolución o «descendencia con modificación», término utilizado por el científico para definir este fenómenos.
A pesar de que Charles Darwin ostenta el honor de haber elaborado esta teoría de manera científica y rigurosa, existieron importantes antecedentes —puede mencionarse en este sentido la aportación del propio abuelo de Darwin, Erasmo Darwin— que establecieron las primeras pautas del interés científico por estos temas. Sin duda, hay que destacar los estudios de Jean Baptiste de Monet, caballero de Lamarck (1744-1829), que inauguraron una corriente de pensamiento precursora en el estudio de la evolución de los seres vivos.
La tesis fundamental del lamarquismo es la transmisión de los caracteres adquiridos como origen de la evolución; la causa de las modificaciones de dichos caracteres se encuentra en el uso o no de los diversos órganos, tesis que se resume en la siguiente frase: «La función crea el órgano». Lamarck resume sus ideas en Filosofía zoológica (1809), el primer trabajo científico donde se expone de manera clara y razonada una teoría sobre la evolución.
A lo largo de cinco años —entre 1831 y 1836—, Charles Darwin, viajando a bordo del Beagle, recogió datos botánicos, zoológicos y geológicos que le Permitieron establecer un conjunto de hipótesis que cuestionaban las ideas precedentes sobre la generación espontánea de la vida.
Durante los veinte años siguientes intentó aplicar estos datos a la formulación de una explicación coherente sobre la diversidad observada. En 1858, Darwin se vio obligado a Presentar sus trabajos, cuando recibió el manuscrito de un joven naturalista, A. R. Wallace, que había llegado de manera independiente a ¡as mismas conclusiones que él, es decir, a la idea de ¡a evolución por medio de ¡a selección natural.
Tanto Darwin como Wallace habían tomado como base la obra de Malthus sobre el crecimiento de la población, en la que se establece que, dicho factor tiende a ser muy elevado, se mantiene constante dado que la disponibilidad de alimento y espacio son limitados; a partir de esta premisa la idea de la competencia. Con esta base argumental se pueden establece dos aspectos fundamentales que sustentan la teoría de Darwin y Wallace. Ambos científicos dan por sentado que los seres vivos pueden presentar clones.
Esta idea, junto con la noción de competencia establecida anterior por Malthus, les lleva a establecer que estas variaciones pueden ser ventajas o no en el marco de dicha competencia. Por otro lado, como resultado de la lucha tiene lugar una selección natural que favorece a los individuos con variaciones ventajosas y tiende a eliminar a los menos eficaces en la consecución de los recursos necesarios para la vida. Sin embargo, existe un punto de discrepancia entre ambos. Wallace nunca compartió la idea de la selección expresada por Darwin en su obra El origen del hombre (1871). Según Darwin algunos caracteres son preservados sólo porque permiten a los macho mayor eficacia en esta relación con las hembras.
Desarrollo de la teoría de la evolución
A finales del siglo XIX, el llamado neodarvinismo primitivo, que se basa en el principio de la selección natural como base de la evolución, encuentra en el biólogo alemán A. Weismann uno de sus principales exponentes. Esta hipótesis admite que las variaciones sobre las que actúa la selección se transmiten según las teorías de la herencia enunciadas por Mendel, elemento que no pudo ser resuelto Darwin, pues en su época aún no se conocían las ideas del religioso austriaco.
Durante el siglo XX, desde 1930 a 1950, se desarrolla la teoría neodarwinista moderna o teoría sintética,: denominada así porque surge a partir de la fusión de tres disciplinas diferentes: la genética, la sistemática y la paleontología. La creación de esta corriente viene marcada por la aparición de tres obra. La primera, relativa a los aspectos genéticos de la herencia, es Genetics and the origin of species (1937). Su autor, T. H. Dobzhansky, plantea que las variaciones genéticas implicadas en la evolución son esencialmente mínimas y heredables, de acuerdo con las teorías de Mendel.
El cambio que se introduce, y que coincide posteriormente con las aportaciones de otras disciplinas científicas, es a consideración de los seres vivos no como formas aisladas, sino como partícipes de una población. Esto implica entender los cambios como frecuencia génica de los alelos que determinan un carácter concreto. Si esta frecuencia es muy alta en lo que se refiere a la población, esto puede suponer la creación de una nueva especie.
Más adelante, E. Mayr desarrollará en sus obras Systematics and the origin of the species (1942) y Animal species evolution (1963) dos conceptos muy importantes: por un lado, el concepto biológico de especie; por otra parte, Mayr plantea que la variación geográfica y las condiciones ambientales pueden llevar a la formación de nuevas especies. De este modo, se pueden originar dos especies distintas como consecuencia del aislamiento geográfico, o lo que es lo mismo, dando lugar, cuando intentamos el cruzamiento de dos individuos de cada una de estas poblaciones, a un descendiente no fértil. Atendiendo a las condiciones ambientales, en consonancia con las ideas de Dobzhansky., la selección actuaría conservando los alelos mejor adaptados a estas condiciones y eliminando los menos adaptados. En 1944 el paleontólogo G. G. Simpson publica la tercera obra clave para poder comprender esta corriente de pensamiento: en Tempo and mode in evolution establece la unión entre la paleontología y la genética de poblaciones.
Durante la segunda mitad del siglo XX se han planteado dos tendencias fundamentales, la denominada innovadora y el darvinismo conservador. La primera de ellas, cuyo máximo exponente es M. Kimura, propone una teoría llamada neutralista, que resta importancia al papel de la selección natural en la evolución, dejando paso al azar. Por su parte, el neodarvinismo conservador, representado por E. O. Wilson, R. Dawkins y R. L Trivers, queda sustentada en el concepto de «gen egoísta»; según esta hipótesis, todo ocurre en la evolución como si cada gen tuviera por finalidad propagarse en la población. Por tanto, la competición no se produce entre individuos, sino entre los aletos rivales. Así, los animales y las plantas serían simplemente estrategias de supervivencia para los genes.

LEYES DE MENDEL


Las Leyes de Mendel (o Genética mendeliana o Reglas de Mendel) es un conjunto de reglas primarias relacionadas con la transmisión por herencia de las características que poseen los organismos padres y transmiten a sus hijos; este mecanismo de herencia tiene su fundamento en la genética. Las leyes se derivan del trabajo realizado por Gregor Mendel publicado en el año 1865 y el 1866 que fue "re-descubierto" posteriormente en 1900, generando una controversia. Cuando las leyes de Mendel fueron integradas en la teoría cromosómica de la herencia de Thomas Hunt Morgan en el año 1915 se puede decir que pasaron a ser el núcleo de la genética clásica.

LEY DE LA UNIFORMIDAD DE LA PRIMERA GENERACION FILIAL

Conocida también como Primera Ley de Mendel. Se formula diciendo que, al cruzar dos variedades cuyos individuos tienen razas puras ambos para un determinado carácter (por ejemplo, un genotipo es AA o aa), todos los híbridos de la primera generación son similares fenotípicamente. Es un error muy extendido suponer que la uniformidad de los híbridos es una ley de transmisión, pues la dominancia nada tiene que ver con la transmisión, sino con la expresión del genotipo. Por lo que esta observación mendeliana no suele considerarse una ley. Las leyes mendelianas de transmisión son por lo tanto dos: la Ley de segregación de caracteres independientes (1ª ley) y la Ley de la Herencia Independiente de Caracteres (2ª ley). Véase la versión inglesa de este artículo para una exposición más rigorosa y sencilla.
Se puede poner un ejemplo con guisantes amarillo con genotipo de raza pura y otra variedad de guisantes con piel de color verde , la separación en gametos hace que cada descendiente posea como genotipo , Mendel observó además que la forma en que se mostraba esta nueva generación era con todos los guisantes amarillos (igual fenotipo). Esta es la razón por la que se denomina también a esta ley: Uniformidad de los híbridos de la primera generación
Se cumple la primera ley de Mendel en los cruzamientos en los que hay una herencia intermedia o sin dominancia, los individuos heterocigotos para cierta característica expresan una "condición intermedia" de los dos genes alelos. Por ejemplo: al cruzar dos plantas de líneas puras, una con flores rojas:AA y otras con flores blancas: aa, la generación filial uno será 100% heterocigota y 100% plantas con flores rosadas.

LEY DE LA SEGREGACION DE CARACTERES INDEPENDIENTES

Conocida también como Segunda Ley de Mendel o de la separación o disyunción de los alelos. Esta segunda ley establece que durante la formación de los gametos cada alelo de un par se separa del otro miembro para determinar la constitución genética del gameto filial. Es muy habitual representar las posibilidades de hibridación mediante un cuadro de Punnett.
G. Mendel obtuvo esta ley al cruzar diferentes variedades obtenidas de la anterior ley, pudo observar en sus experimentos que obtenía muchos guisantes con características de piel amarilla y otros (menos) con caraterísticas de piel verde, pudo comprobar que la proporción era de 3:4 de color amarilla y 1:4 de color verde.
La segregación asegura que en los gametos, los caracteres se separan y aparecen de acuerdo a como se organizan de generación en generación. La aparición siempre se hace una vez por generación y siempre los caracteres se separan por pares.